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Abstract 
In this paper I examine what industry really needs 

from formal specification techniques. I first describe the 
background to our use of formal techniques. I then look at 
the role of formal specifications in development and 
consider what are the important questions that need to be 
asked. I illustrate these with some practical experience on 
industrial projects and conclude with some lessons we 
have learned about for formal specification techniques 
and about the tools which support them. 

1. Background 

Praxis Critical Systems is a systems and software 
engineering company whose business focus is the 
development of systems where the cost of failure is high. 
Our main markets are aerospace including avionics and 
air traffic control, railways, finance, medicine and similar 
applications. To develop systems with the high integrity 
needed for these applications we deploy a strong quality 
management system, the best technical methods and a 
comprehensive risk management approach. Formal 
methods are among the powerful engineering techniques 
we use in our day to day work. 

2. What are the important questions? 

Given the large number of competing formal methods 
it seems natural to ask “What is the best formal method”. 
This is not really a useful question on its own, however. 
Before we ask about the best solution, we need to 
understand what problem we are addressing. I conjecture 
that much fruitless debate in this area, and some 
misguided exercises in formal specification, arise because 
there has not been a clear enough understanding of the 
problem to be solved. I suggest that before carrying out 
any formal specification we need to ask, and answer, the 
following three questions.  
• What am I going to specify? 

Before we can write a specification, we need to 
know what it is we are trying to define. As I shall 
argue shortly, there are many possible answers to this 
question, and I believe that failure to distinguish 
clearly between them can lead to much confusion. 

• Why do I want to specify it? 
Specification is not an end in itself. It is only a 

means to some other end, such as the deployment of a 
working system. We always need to ask whether 
specifying something will contribute to that end (and, 
if it will, whether it is the most effective means of 
doing so). I will suggest some areas where we have 
found that formal specification is useful, and examine 
why this is so. 

• What use am I going to make of the specification once 
I’ve got it? 

Different formal notations are good at different 
things. For example if I want to animate my 
specification I need an executable notation; if I want 
my specification to be easily readable by people then I 
may want an expressive notation which is less suitable 
for animation or proof. I therefore need to consider, 
just as with any document, the intended audience for 
the specification and the use that will be made of it. 

3. What is it useful to describe? 

When building a system we need to understand many 
different things, ranging from the environment that the 
system will be used in to the detailed code that performs 
critical functions. All of these are candidates for 
specification. Although there are no universally agreed 
artefacts that are relevant to all systems, we find it useful to 
distinguish the following things to be specified. 
• Domain Knowledge 

Parnas[1] and Jackson[2] have both pointed out that 
understanding the behaviour of the system’s 
environment is a crucially important part of building 
any system. If we are building an air traffic control 
system, for example, then we certainly need to 
understand the behaviour of aircraft. 

• User Requirements 
Systems are built with a purpose: to achieve some 

effect in the real world. The purpose of an air traffic 
control system, for example, is to prevent aircraft from 
colliding with each other while maintaining an 
expeditious flow of traffic. Note that these 
requirements are often not directly related to the 



system at all – they describe desired behaviour in the 
system’s environment. 

• System Requirements  
In order to achieve the desired effects in the real 

world, the system must itself exhibit certain 
behaviour. For example an air traffic control system 
must be able to track aircraft and manage flight plans. 
System requirements differ qualitatively from user 
requirements in that they define only behaviour 
which the system itself must exhibit: they can be 
given to suppliers as a definition of what they must 
provide. 

• System Specification  
Typically, system requirements do not prescribe 

every detail of what the system is to do. In response 
to the requirements the supplier may provide a more 
detailed specification of the system’s behaviour. This 
specification should be free of any design 
information – that is not of interest to the system’s 
users – and it differs only in degree of detail from the 
system requirements. There is no hard and fast line 
between them. 

• Design Structure 
The design structure of a system is entirely 

different from its specification. It defines the 
components of the system and how they interact. It is 
of direct interest only to the supplier and should not 
be relevant to the system’s users. 

• Subsystem specifications 
Subsystem specifications define the external 

behaviour of each of the system’s components. If the 
subsystem is a code module, it defines exactly what 
behaviour the code must achieve. In some cases the 
subsystems are large developments in their own right 
which are contracted to another supplier. 

• Process behaviour and interactions 
One particularly complex kind of component in a 

software-based system is a process: a component 
which has its own autonomous behaviour. Different 
processes work concurrently, often on different 
machines, and it can be particularly difficult and 
important to characterise their interactions. 

• Code 
One way of showing that a module meets its 

specification is to characterise the behaviour of the 
code mathematically. Such low-level specifications 
are used in critical systems for development and 
assurance of code. 

The following sections discuss the role of formality in 
the specification of each of these characteristics. 

4. Domain Knowledge 

Facts about the environment of a system are 
traditionally the subject of “systems analysis”. Techniques 
such as context diagrams are used to identify the relevant 
actors in the domain and their interactions with the system. 
Important facts about entities in the domain are typically 
captured in entity-relationship diagrams and in domain-
specific notations such as acceleration and braking 
formulae. 

Formal notations can be used to supplement entity-
relationship diagrams since they are, of course, much 
richer notations and can express far more complex 
properties than simple cardinalities. Typically these 
properties are expressed as state invariants in notations like 
VDM and Z. It is crucial to appreciate that what is being 
specified here is knowledge about the real world, not 
desired behaviour. Failure to appreciate this point can lead 
to serious errors. For example in specifying the state of an 
air traffic control system people are tempted to write an 
invariant that states that aircraft separations are maintained. 
This is a dangerous confusion between what is true and 
what one would like to be true. 

Specifying domain knowledge can be very beneficial 
provided it is done accurately. Knowledge of the behaviour 
of the real world is frequently used to justify preconditions 
on operations and to show that only certain event 
sequences are feasible. Such restrictions can greatly 
simplify the implementation of the system. 

5. User Requirements 

User requirements for systems are typically couched in 
very high-level terms, and usually there is no great need for 
them to be precise. The most important characteristic of a 
user requirement statement is that it should be 
comprehensible to the end users. These requirements are 
frequently quantitative (“increase traffic by 10%”) and 
often involve time (“land an aircraft every 90 seconds”). 
The best way of defining user requirements is usually by 
scenarios describing how the world should look when the 
system is working, and by quantified changes in real world 
measures. 

For all these reasons we have not found formal methods 
to be useful or necessary in specifying user requirements. 

6. System Requirements  

As we move towards characterising the system to be 
built, precision becomes more important. The requirements 
for a system need to draw a sharp distinction between those 
systems which are acceptable and those which are not. 
They need to define all the properties which are important 
to the user. These typically include: 



• state transitions; 
• allowable histories; 
• the transfer function of a control system; 
• a Formal Security Policy Model; 
• critical safety properties. 

All of these are in principle specifiable 
mathematically. However, there are some problems in 
using conventional formal methods for carrying out such 
specifications. One issue is modality: typically system 
requirements are not all or nothing, but are prioritised in 
some way such as mandatory versus desirable. This sort 
of modality is not easily expressible. A second issue is to 
do with the way that system behaviour is characterised. 
For example we have recently developed a formal 
security policy model (FSPM) for a highly secure system, 
as well as a formal top level specification (FTLS). 
Whereas the FTLS was readily expressible in Z, since it 
defined a set of operations on the system, the FSPM was 
more difficult to express. Rather than defining particular 
operations, it was necessary to characterise certain 
properties of all operations (for example that they should 
not display secret material) without saying exactly what 
the operations were. This can be done in Z, but not by 
using the established strategy, and the relationship 
between the FSPM and the FTLS is fairly subtle [6]. 

7. System Specification  

There is no difference in principle between a system 
specification and a statement of system requirements, but 
in practice they are at very different levels of detail. 
Broadly speaking, system requirements say what a system 
must do; the specification says what it will do. However, 
because the specification is never complete, it still permits 
a variety of different behaviours all of which satisfy the 
specification. 

The main aspects of system behaviour which are 
typically specified include: 
• abstract functionality; 
• concrete interfaces; 
• concurrency; 
• performance; 
• availability, reliability and maintainability. 

Notations used in a specification must offer 
• precision: this, of course is one of the main reasons 

for using formal notations. 
• expressiveness: all the different aspects need to be 

expressible, and the specification should be as close 
as possible to the “natural” way of defining what is 
wanted. 

• complexity management: any realistic system has a 
specification running to several hundred pages, and it 
is essential to structure it in a manageable way. 

• verifiability: it must be possible to show that the 
specification is well formed and that a system which 
satisfies the specification will also satisfy the system 
requirements. 

There are three different audiences for a system 
specification: 
• users, so they can evaluate what they are going to get; 
• implementers, so they know what they have to build; 
• testers, so they know what the system should do. 

The reasons for using formality in a system 
specification are: 
• to achieve clarity; 
• to achieve expressiveness; in particular to allow the 

specification to be written in user oriented terms, 
stating what the system will do rather than how it will 
do it and to allow the use of logical constructors such 
as “and” rather than programming constructors such as 
“;”; 

• to allow for analysis, in particular to allow formal 
demonstration that the requirements are met; 

• to allow for refinement into design and code. 
In practice, clarity and visibility are, in my opinion, the 

most important characteristics. The specification should 
make it absolutely obvious to the users what they are going 
to get. Furthermore by using the specification as a basis for 
testing, it becomes clear exactly how much of the system 
has been implemented and tested. This really works in 
practice: some years ago we developed a system, CDIS, 
using formal specification [3]. During integration of this 
system into its operational environment the customer’s 
project director reported that “CDIS performed impeccably 
as expected”. I believe that the “as expected” is a result of 
the clarity and precision of the specification and our use of 
it throughout the development. 

Unfortunately, the different uses of a specification 
demand different characteristics in the specification 
language. In particular, expressiveness runs counter to the 
ability to execute the language, to carry out refinement and 
to carry out proof. Therefore these aspects have to be 
traded off against each other. I do not suggest that there is 
always one right choice: it depends where the greatest risks 
are. If the greatest risk is that the specification will define 
behaviour which is not what the user wants (and in my 
experience it often is) then expressiveness must take 
precedence over proof and refinement. However, if the 
greatest risk is that the subsequent development will be 
wrong, or that there will be some subtle inconsistency 
between the specification and, for example, a security 
requirement then a language which is better suited to proof 
and refinement may be more valuable. 

Different aspects of a system require different 
specification notations. Indeed formal notations are only 
appropriate for some aspects – most notably abstract 
functionality – but where they are appropriate they are by 
far the best methods. This means that different languages 



will be needed for the specification of a single system. 
There will of course be points at which the specifications 
are talking about the same thing, and there the meaning is 
that the system must simultaneously satisfy all the 
different specifications. On the other hand I do not believe 
that one needs to imagine that there is a single underlying 
semantic model defining the whole system behaviour. 
One should recognise that different specification 
languages are needed precisely because they are talking 
about different things, and one should think of relating the 
specifications at the points of contact, rather than unifying 
them in some grand model. 

Our projects typically use different specification 
methods for abstract functionality, user interface and 
concurrency (and other notations for performance and 
other aspects). We have used, for example, Z for abstract 
functionality, pictures and state machines for the user 
interface and CSP for concurrency. Typical points of 
contact are the fact that particular buttons on the user 
interface invoke particular operations characterised by Z 
schemas, and that these same operations appear as actions 
in the CSP model. 

8. Design Structure 

The high level design of a complex system is typically 
concerned with issues such as distribution of processing 
over different machines, communications between 
components and so on. We have found that the high level 
design is usually driven by the non-functional 
requirements such as resilience, performance, safety and 
so on and is not directly related to the functionality of the 
system at all. Looking at the architecture of CDIS, for 
example, one can immediately see that it is a highly 
resilient distributed system but one has no idea whether it 
is for air traffic controllers or, say, management of the 
electricity supply.  

Just as there are different aspects in a system 
specification, there are different aspects to a system 
design so it is better to talk about design structures than to 
think of a single structure. Typical structures are: 
• distribution structure – how functionality is allocated 

over machines; 
• process structure – how functionality within a 

machine, and inter-machine communications, are 
assigned to concurrent processes; 

• transaction structure – how the processes co-operate 
to carry out processing of units of work; 

• calling hierarchy – how the functionality within a 
process is allocated to the layers of software and 
hardware. 

Designing these structures is a creative task and we do 
not have good formal criteria for judging whether one 
design is better than another. Without such criteria there is 
little that formality can contribute to the high level design. 

Formal notations certainly do help us at the next level of 
detail, however, in defining the components and their 
interactions. 

9. Subsystem specifications 

The creative task of design is to identify the components 
and to allocate functionality to each component. Having 
chosen our components, we need to define them precisely: 
that means giving a precise specification of the interface 
that each component offers. Creating and maintaining these 
interface definitions is a key to controlling the 
development of a complex system. We have successfully 
used formal specifications for this purpose. However, the 
definition of these interfaces and their relationship to the 
system specification is not as straightforward as textbooks 
on formal methods sometimes claim. First, there is some 
subtlety in deciding what exactly is being specified; 
second, the conventional account of refinement does not 
match what is really needed in large systems. 

9.1. Subsystems versus components 

The problem of specifying components is illustrated in 
Figure 1.  

Figure 1: Specifying Components 
If A is an isolated component at the bottom of the 

hierarchy, then it is straightforward to specify its interface. 
However, consider the subsystem B, made up of 
components B1 and B2. While we can certainly specify the 
behaviour of B as a whole, it is not so straightforward to 
specify the behaviour of component B1. To do this we 
need to define how B1 uses B2. This could be done either 
by specifying B1 as a functor which transforms the 
behaviour of B2 into the behaviour of B as a whole, or by 
describing the actual program that B executes using, for 
example, the refinement calculus. Either of these is a more 
complex undertaking than specifying a single component 
like A. The situation becomes more complex when there 
are shared components such as C2. Now it is not even 
straightforward to specify C, since its behaviour can be 
influenced by the external module D causing changes in 
the state of C2. 
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9.2. The Problem of Refinement 

In notations like Z and VDM there is a well-developed 
theory of refinement which allows us to move from an 
abstract specification of a system to a more concrete 
design. Unfortunately this theory bears little resemblance 
to the real practice of design. That is because it assumes 
that the underlying structure of the design is the same as 
the structure of the specification, as shown in Figure 2. 

Figure 2: The Z/VDM Model of Refinement 
In reality, however, the functionality is allocated to 

components in a much more complex way, as shown in 
Figure 3. Conventional refinement does not tell us how to 
relate the specification of Op1, say, to the various 
components which implement it in the design. 

Figure 3: Allocation to Processes and 
Modules 

9.3. Formality and Testability 

In spite of these limitations, the specification of 
components is extremely useful in practice. First, it gives 
a clear definition to the implementers of the component. 
Second, it makes the components highly testable. An 
independent study on CDIS [4] looked at the number of 
defects in components that had been designed formally 
and informally. The number of defects found by system 
testing was similar in both cases; however, the number of 
defects found in the delivered system was lower in the 
formally designed components, showing that testing of 
these components had been more effective. This suggests 
that a benefit of formalisation is not so much in 
eliminating errors as in making them more visible. 

10. Process behaviour and interactions 

One of the most difficult aspects of design is 
management of concurrency. Distribution of processing 
across different machines and different processes on a 
single machine introduces many possibilities for errors like 
deadlock, livelock and race conditions. Fortunately there 
are well-developed notations and theories which allow us 
to develop and analyse concurrent designs to check for 
such problems. We have recently used CSP to validate the 
design of a fairly complex distributed system.  

We started by writing a CSP specification of the 
intended behaviour of the system. In this specification, 
each external CSP action is an operation in the Z 
specification. The behaviour was described by processes 
which were based on an abstract view of the overall design. 
In addition we modelled the effect of failures of individual 
machines either through hardware or software faults. We 
then tried to show that this specification was correct by 
showing that it satisfied some critical properties: for 
example that it was deadlock-free, and that it satisfied 
some security requirements. We used the FDR tool to 
demonstrate these properties as refinement rules. In order 
to make this practical we had to simplify the model: we 
reduced the number of instances of identical processes, and 
we grouped operations into classes which and treated each 
class as a single operation. The FDR analysis proved 
extremely useful in showing that there were several flaws 
in our original specification, in particular in our proposed 
handling of failures. 

We then developed a more detailed design of each of 
the components in the system. Each of these designs was 
validated by showing that it refined the corresponding part 
of the specification. Unfortunately machine checking was 
only practical for the simpler components; the state space 
of the more complex components was too large for a 
refinement check to be practical. Real systems still need 
more power from tools such as model checkers. 

11. Code 

It is of course possible to develop code in a fully 
mathematical way from formal specifications. We have not 
usually applied this degree of rigour. However we have 
found that developing code from formal module 
specifications in VDM or Z is a straightforward activity. 
Furthermore, the use of formal specifications in this way 
leads to exceptionally simple and well structured code [4]. 
Similarly, it is straightforward to develop the code of Ada 
tasks directly from CSP specifications. For highly critical 
applications, we use the SPARK annotated Ada subset and 
use the SPARK analyser to check for information flow 
errors in the code. There is evidence that this approach 
actually reduces the cost of critical code because of its 
ability to find obscure errors early in the process [5]. It is 
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also possible to use the analyser to support fully formal 
development from pre and post conditions, and to prove 
the absence of run-time errors in the code. 

12. Summary and Lessons Learned 

12.1. Effectiveness of Formal Methods 

We have found the use of formal methods highly 
effective. The key benefits come from their application 
early in the lifecycle, where the cost of errors is high. 
Formal methods do not eliminate errors, but they do 
highlight them and make them easier to find in reviews 
and tests. We have some experience of using formality 
retrospectively, to validate developments that have been 
carried out informally, and this is less effective than using 
proper methods from the outset. Formal methods are only 
appropriate for some aspects of development, and they 
have to be used in conjunction with other methods. Where 
formal methods are appropriate, they are not just effective 
but they also reduce costs. In a recent project we have 
found that proving properties of the Z specification was 
an effective and efficient method of detecting errors: it 
found more errors, at a lower cost per error, than unit 
testing for example. On the other hand proofs later in the 
lifecycle, based on the code, were less effective. 

Overall there is considerable evidence that use of 
formal techniques can greatly reduce defect rates in 
delivered products [4]. 

12.2. Lessons for Methods 

Different methods are needed for different aspects of 
development. There are many aspects of a system and its 
environment to be specified, and each aspect makes its 
own demands on the notation. All notations offer partial 
descriptions, and these partial descriptions need to be 
consistent. However, this does not mean that methods 
have to be integrated; it is better to think of relating 
different notations at the points where they are describing 
common phenomena. 

Formal methods can be effective without necessarily 
carrying out formal analysis. The most important benefit 
of a formal notation is the clarity and precision it offers, 
not the analytical power it conveys. This needs to be 
borne in mind when selecting methods and when 
designing formal specification notations. 

Since the main benefits of formal methods stem from 
their use early in the lifecycle, we need to find ways of 
making them more accessible to end users. The use of 
prototypes and of domain-specific notations are examples 
of how we might do this. 

If we want to carry out development formally, we need 
to find much more powerful methods of refinement. 

These need to take into account the complexity of real 
systems and the big change in structure that takes place 
between the system specification and the system 
architecture. 

12.3. Lessons for Tools 

Tools are very important, but I do believe that they 
should be subservient to methods and not vice-versa. It is 
more important to develop expressive notations than to 
have good tools for handling obscure specifications. 

Tools should be seen as aids to analysis, more than as 
methods of assurance. The real benefit of a model checker 
or proof tool is not when it tells you that your specification 
is correct, but when it demonstrates the flaws in your 
thinking. This is an important consideration for tool 
writers: they need to think far more about the error cases 
than the correct ones. This is similar to situation with 
compilers: there are far more compilations of incorrect 
programs than there are of correct ones, and good error 
reporting is an important requirement of compilers. 

If formal methods tools are to be used in mainstream 
development they have to be fully automatic. Model 
checking can be applied by ordinarily capable engineers, 
but it is not reasonable to expect most engineers to carry 
out sophisticated proofs. 

Unfortunately real systems are too big for the current 
generation of tools. We need huge improvements in the 
capacity of tools like model checkers if they are to be used 
routinely in real system development. 
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