
What Does Industry Need From Formal Specification Techniques?

Anthony Hall
Praxis Critical Systems

Abstract
In this paper I examine what industry really needs

from formal specification techniques. I first describe the
background to our use of formal techniques. I then look at
the role of formal specifications in development and
consider what are the important questions that need to be
asked. I illustrate these with some practical experience on
industrial projects and conclude with some lessons we
have learned about for formal specification techniques
and about the tools which support them.

1. Background

Praxis Critical Systems is a systems and software
engineering company whose business focus is the
development of systems where the cost of failure is high.
Our main markets are aerospace including avionics and
air traffic control, railways, finance, medicine and similar
applications. To develop systems with the high integrity
needed for these applications we deploy a strong quality
management system, the best technical methods and a
comprehensive risk management approach. Formal
methods are among the powerful engineering techniques
we use in our day to day work.

2. What are the important questions?

Given the large number of competing formal methods
it seems natural to ask “What is the best formal method”.
This is not really a useful question on its own, however.
Before we ask about the best solution, we need to
understand what problem we are addressing. I conjecture
that much fruitless debate in this area, and some
misguided exercises in formal specification, arise because
there has not been a clear enough understanding of the
problem to be solved. I suggest that before carrying out
any formal specification we need to ask, and answer, the
following three questions.
• What am I going to specify?

Before we can write a specification, we need to
know what it is we are trying to define. As I shall
argue shortly, there are many possible answers to this
question, and I believe that failure to distinguish
clearly between them can lead to much confusion.

• Why do I want to specify it?
Specification is not an end in itself. It is only a

means to some other end, such as the deployment of a
working system. We always need to ask whether
specifying something will contribute to that end (and,
if it will, whether it is the most effective means of
doing so). I will suggest some areas where we have
found that formal specification is useful, and examine
why this is so.

• What use am I going to make of the specification once
I’ve got it?

Different formal notations are good at different
things. For example if I want to animate my
specification I need an executable notation; if I want
my specification to be easily readable by people then I
may want an expressive notation which is less suitable
for animation or proof. I therefore need to consider,
just as with any document, the intended audience for
the specification and the use that will be made of it.

3. What is it useful to describe?

When building a system we need to understand many
different things, ranging from the environment that the
system will be used in to the detailed code that performs
critical functions. All of these are candidates for
specification. Although there are no universally agreed
artefacts that are relevant to all systems, we find it useful to
distinguish the following things to be specified.
• Domain Knowledge

Parnas[1] and Jackson[2] have both pointed out that
understanding the behaviour of the system’s
environment is a crucially important part of building
any system. If we are building an air traffic control
system, for example, then we certainly need to
understand the behaviour of aircraft.

• User Requirements
Systems are built with a purpose: to achieve some

effect in the real world. The purpose of an air traffic
control system, for example, is to prevent aircraft from
colliding with each other while maintaining an
expeditious flow of traffic. Note that these
requirements are often not directly related to the

system at all – they describe desired behaviour in the
system’s environment.

• System Requirements
In order to achieve the desired effects in the real

world, the system must itself exhibit certain
behaviour. For example an air traffic control system
must be able to track aircraft and manage flight plans.
System requirements differ qualitatively from user
requirements in that they define only behaviour
which the system itself must exhibit: they can be
given to suppliers as a definition of what they must
provide.

• System Specification
Typically, system requirements do not prescribe

every detail of what the system is to do. In response
to the requirements the supplier may provide a more
detailed specification of the system’s behaviour. This
specification should be free of any design
information – that is not of interest to the system’s
users – and it differs only in degree of detail from the
system requirements. There is no hard and fast line
between them.

• Design Structure
The design structure of a system is entirely

different from its specification. It defines the
components of the system and how they interact. It is
of direct interest only to the supplier and should not
be relevant to the system’s users.

• Subsystem specifications
Subsystem specifications define the external

behaviour of each of the system’s components. If the
subsystem is a code module, it defines exactly what
behaviour the code must achieve. In some cases the
subsystems are large developments in their own right
which are contracted to another supplier.

• Process behaviour and interactions
One particularly complex kind of component in a

software-based system is a process: a component
which has its own autonomous behaviour. Different
processes work concurrently, often on different
machines, and it can be particularly difficult and
important to characterise their interactions.

• Code
One way of showing that a module meets its

specification is to characterise the behaviour of the
code mathematically. Such low-level specifications
are used in critical systems for development and
assurance of code.

The following sections discuss the role of formality in
the specification of each of these characteristics.

4. Domain Knowledge

Facts about the environment of a system are
traditionally the subject of “systems analysis”. Techniques
such as context diagrams are used to identify the relevant
actors in the domain and their interactions with the system.
Important facts about entities in the domain are typically
captured in entity-relationship diagrams and in domain-
specific notations such as acceleration and braking
formulae.

Formal notations can be used to supplement entity-
relationship diagrams since they are, of course, much
richer notations and can express far more complex
properties than simple cardinalities. Typically these
properties are expressed as state invariants in notations like
VDM and Z. It is crucial to appreciate that what is being
specified here is knowledge about the real world, not
desired behaviour. Failure to appreciate this point can lead
to serious errors. For example in specifying the state of an
air traffic control system people are tempted to write an
invariant that states that aircraft separations are maintained.
This is a dangerous confusion between what is true and
what one would like to be true.

Specifying domain knowledge can be very beneficial
provided it is done accurately. Knowledge of the behaviour
of the real world is frequently used to justify preconditions
on operations and to show that only certain event
sequences are feasible. Such restrictions can greatly
simplify the implementation of the system.

5. User Requirements

User requirements for systems are typically couched in
very high-level terms, and usually there is no great need for
them to be precise. The most important characteristic of a
user requirement statement is that it should be
comprehensible to the end users. These requirements are
frequently quantitative (“increase traffic by 10%”) and
often involve time (“land an aircraft every 90 seconds”).
The best way of defining user requirements is usually by
scenarios describing how the world should look when the
system is working, and by quantified changes in real world
measures.

For all these reasons we have not found formal methods
to be useful or necessary in specifying user requirements.

6. System Requirements

As we move towards characterising the system to be
built, precision becomes more important. The requirements
for a system need to draw a sharp distinction between those
systems which are acceptable and those which are not.
They need to define all the properties which are important
to the user. These typically include:

• state transitions;
• allowable histories;
• the transfer function of a control system;
• a Formal Security Policy Model;
• critical safety properties.

All of these are in principle specifiable
mathematically. However, there are some problems in
using conventional formal methods for carrying out such
specifications. One issue is modality: typically system
requirements are not all or nothing, but are prioritised in
some way such as mandatory versus desirable. This sort
of modality is not easily expressible. A second issue is to
do with the way that system behaviour is characterised.
For example we have recently developed a formal
security policy model (FSPM) for a highly secure system,
as well as a formal top level specification (FTLS).
Whereas the FTLS was readily expressible in Z, since it
defined a set of operations on the system, the FSPM was
more difficult to express. Rather than defining particular
operations, it was necessary to characterise certain
properties of all operations (for example that they should
not display secret material) without saying exactly what
the operations were. This can be done in Z, but not by
using the established strategy, and the relationship
between the FSPM and the FTLS is fairly subtle [6].

7. System Specification

There is no difference in principle between a system
specification and a statement of system requirements, but
in practice they are at very different levels of detail.
Broadly speaking, system requirements say what a system
must do; the specification says what it will do. However,
because the specification is never complete, it still permits
a variety of different behaviours all of which satisfy the
specification.

The main aspects of system behaviour which are
typically specified include:
• abstract functionality;
• concrete interfaces;
• concurrency;
• performance;
• availability, reliability and maintainability.

Notations used in a specification must offer
• precision: this, of course is one of the main reasons

for using formal notations.
• expressiveness: all the different aspects need to be

expressible, and the specification should be as close
as possible to the “natural” way of defining what is
wanted.

• complexity management: any realistic system has a
specification running to several hundred pages, and it
is essential to structure it in a manageable way.

• verifiability: it must be possible to show that the
specification is well formed and that a system which
satisfies the specification will also satisfy the system
requirements.

There are three different audiences for a system
specification:
• users, so they can evaluate what they are going to get;
• implementers, so they know what they have to build;
• testers, so they know what the system should do.

The reasons for using formality in a system
specification are:
• to achieve clarity;
• to achieve expressiveness; in particular to allow the

specification to be written in user oriented terms,
stating what the system will do rather than how it will
do it and to allow the use of logical constructors such
as “and” rather than programming constructors such as
“;”;

• to allow for analysis, in particular to allow formal
demonstration that the requirements are met;

• to allow for refinement into design and code.
In practice, clarity and visibility are, in my opinion, the

most important characteristics. The specification should
make it absolutely obvious to the users what they are going
to get. Furthermore by using the specification as a basis for
testing, it becomes clear exactly how much of the system
has been implemented and tested. This really works in
practice: some years ago we developed a system, CDIS,
using formal specification [3]. During integration of this
system into its operational environment the customer’s
project director reported that “CDIS performed impeccably
as expected”. I believe that the “as expected” is a result of
the clarity and precision of the specification and our use of
it throughout the development.

Unfortunately, the different uses of a specification
demand different characteristics in the specification
language. In particular, expressiveness runs counter to the
ability to execute the language, to carry out refinement and
to carry out proof. Therefore these aspects have to be
traded off against each other. I do not suggest that there is
always one right choice: it depends where the greatest risks
are. If the greatest risk is that the specification will define
behaviour which is not what the user wants (and in my
experience it often is) then expressiveness must take
precedence over proof and refinement. However, if the
greatest risk is that the subsequent development will be
wrong, or that there will be some subtle inconsistency
between the specification and, for example, a security
requirement then a language which is better suited to proof
and refinement may be more valuable.

Different aspects of a system require different
specification notations. Indeed formal notations are only
appropriate for some aspects – most notably abstract
functionality – but where they are appropriate they are by
far the best methods. This means that different languages

will be needed for the specification of a single system.
There will of course be points at which the specifications
are talking about the same thing, and there the meaning is
that the system must simultaneously satisfy all the
different specifications. On the other hand I do not believe
that one needs to imagine that there is a single underlying
semantic model defining the whole system behaviour.
One should recognise that different specification
languages are needed precisely because they are talking
about different things, and one should think of relating the
specifications at the points of contact, rather than unifying
them in some grand model.

Our projects typically use different specification
methods for abstract functionality, user interface and
concurrency (and other notations for performance and
other aspects). We have used, for example, Z for abstract
functionality, pictures and state machines for the user
interface and CSP for concurrency. Typical points of
contact are the fact that particular buttons on the user
interface invoke particular operations characterised by Z
schemas, and that these same operations appear as actions
in the CSP model.

8. Design Structure

The high level design of a complex system is typically
concerned with issues such as distribution of processing
over different machines, communications between
components and so on. We have found that the high level
design is usually driven by the non-functional
requirements such as resilience, performance, safety and
so on and is not directly related to the functionality of the
system at all. Looking at the architecture of CDIS, for
example, one can immediately see that it is a highly
resilient distributed system but one has no idea whether it
is for air traffic controllers or, say, management of the
electricity supply.

Just as there are different aspects in a system
specification, there are different aspects to a system
design so it is better to talk about design structures than to
think of a single structure. Typical structures are:
• distribution structure – how functionality is allocated

over machines;
• process structure – how functionality within a

machine, and inter-machine communications, are
assigned to concurrent processes;

• transaction structure – how the processes co-operate
to carry out processing of units of work;

• calling hierarchy – how the functionality within a
process is allocated to the layers of software and
hardware.

Designing these structures is a creative task and we do
not have good formal criteria for judging whether one
design is better than another. Without such criteria there is
little that formality can contribute to the high level design.

Formal notations certainly do help us at the next level of
detail, however, in defining the components and their
interactions.

9. Subsystem specifications

The creative task of design is to identify the components
and to allocate functionality to each component. Having
chosen our components, we need to define them precisely:
that means giving a precise specification of the interface
that each component offers. Creating and maintaining these
interface definitions is a key to controlling the
development of a complex system. We have successfully
used formal specifications for this purpose. However, the
definition of these interfaces and their relationship to the
system specification is not as straightforward as textbooks
on formal methods sometimes claim. First, there is some
subtlety in deciding what exactly is being specified;
second, the conventional account of refinement does not
match what is really needed in large systems.

9.1. Subsystems versus components

The problem of specifying components is illustrated in
Figure 1.

Figure 1: Specifying Components
If A is an isolated component at the bottom of the

hierarchy, then it is straightforward to specify its interface.
However, consider the subsystem B, made up of
components B1 and B2. While we can certainly specify the
behaviour of B as a whole, it is not so straightforward to
specify the behaviour of component B1. To do this we
need to define how B1 uses B2. This could be done either
by specifying B1 as a functor which transforms the
behaviour of B2 into the behaviour of B as a whole, or by
describing the actual program that B executes using, for
example, the refinement calculus. Either of these is a more
complex undertaking than specifying a single component
like A. The situation becomes more complex when there
are shared components such as C2. Now it is not even
straightforward to specify C, since its behaviour can be
influenced by the external module D causing changes in
the state of C2.

?
?

B

A B1

B2

D

C

C1

C2

9.2. The Problem of Refinement

In notations like Z and VDM there is a well-developed
theory of refinement which allows us to move from an
abstract specification of a system to a more concrete
design. Unfortunately this theory bears little resemblance
to the real practice of design. That is because it assumes
that the underlying structure of the design is the same as
the structure of the specification, as shown in Figure 2.

Figure 2: The Z/VDM Model of Refinement
In reality, however, the functionality is allocated to

components in a much more complex way, as shown in
Figure 3. Conventional refinement does not tell us how to
relate the specification of Op1, say, to the various
components which implement it in the design.

Figure 3: Allocation to Processes and
Modules

9.3. Formality and Testability

In spite of these limitations, the specification of
components is extremely useful in practice. First, it gives
a clear definition to the implementers of the component.
Second, it makes the components highly testable. An
independent study on CDIS [4] looked at the number of
defects in components that had been designed formally
and informally. The number of defects found by system
testing was similar in both cases; however, the number of
defects found in the delivered system was lower in the
formally designed components, showing that testing of
these components had been more effective. This suggests
that a benefit of formalisation is not so much in
eliminating errors as in making them more visible.

10. Process behaviour and interactions

One of the most difficult aspects of design is
management of concurrency. Distribution of processing
across different machines and different processes on a
single machine introduces many possibilities for errors like
deadlock, livelock and race conditions. Fortunately there
are well-developed notations and theories which allow us
to develop and analyse concurrent designs to check for
such problems. We have recently used CSP to validate the
design of a fairly complex distributed system.

We started by writing a CSP specification of the
intended behaviour of the system. In this specification,
each external CSP action is an operation in the Z
specification. The behaviour was described by processes
which were based on an abstract view of the overall design.
In addition we modelled the effect of failures of individual
machines either through hardware or software faults. We
then tried to show that this specification was correct by
showing that it satisfied some critical properties: for
example that it was deadlock-free, and that it satisfied
some security requirements. We used the FDR tool to
demonstrate these properties as refinement rules. In order
to make this practical we had to simplify the model: we
reduced the number of instances of identical processes, and
we grouped operations into classes which and treated each
class as a single operation. The FDR analysis proved
extremely useful in showing that there were several flaws
in our original specification, in particular in our proposed
handling of failures.

We then developed a more detailed design of each of
the components in the system. Each of these designs was
validated by showing that it refined the corresponding part
of the specification. Unfortunately machine checking was
only practical for the simpler components; the state space
of the more complex components was too large for a
refinement check to be practical. Real systems still need
more power from tools such as model checkers.

11. Code

It is of course possible to develop code in a fully
mathematical way from formal specifications. We have not
usually applied this degree of rigour. However we have
found that developing code from formal module
specifications in VDM or Z is a straightforward activity.
Furthermore, the use of formal specifications in this way
leads to exceptionally simple and well structured code [4].
Similarly, it is straightforward to develop the code of Ada
tasks directly from CSP specifications. For highly critical
applications, we use the SPARK annotated Ada subset and
use the SPARK analyser to check for information flow
errors in the code. There is evidence that this approach
actually reduces the cost of critical code because of its
ability to find obscure errors early in the process [5]. It is

Op1

Op2

Op3 Op3

Op2

Op1

Op1

Op2

Op3

ScheduleOp

Op2PreOp1Pre

MonitorOp

OpComm

ModifyDB

also possible to use the analyser to support fully formal
development from pre and post conditions, and to prove
the absence of run-time errors in the code.

12. Summary and Lessons Learned

12.1. Effectiveness of Formal Methods

We have found the use of formal methods highly
effective. The key benefits come from their application
early in the lifecycle, where the cost of errors is high.
Formal methods do not eliminate errors, but they do
highlight them and make them easier to find in reviews
and tests. We have some experience of using formality
retrospectively, to validate developments that have been
carried out informally, and this is less effective than using
proper methods from the outset. Formal methods are only
appropriate for some aspects of development, and they
have to be used in conjunction with other methods. Where
formal methods are appropriate, they are not just effective
but they also reduce costs. In a recent project we have
found that proving properties of the Z specification was
an effective and efficient method of detecting errors: it
found more errors, at a lower cost per error, than unit
testing for example. On the other hand proofs later in the
lifecycle, based on the code, were less effective.

Overall there is considerable evidence that use of
formal techniques can greatly reduce defect rates in
delivered products [4].

12.2. Lessons for Methods

Different methods are needed for different aspects of
development. There are many aspects of a system and its
environment to be specified, and each aspect makes its
own demands on the notation. All notations offer partial
descriptions, and these partial descriptions need to be
consistent. However, this does not mean that methods
have to be integrated; it is better to think of relating
different notations at the points where they are describing
common phenomena.

Formal methods can be effective without necessarily
carrying out formal analysis. The most important benefit
of a formal notation is the clarity and precision it offers,
not the analytical power it conveys. This needs to be
borne in mind when selecting methods and when
designing formal specification notations.

Since the main benefits of formal methods stem from
their use early in the lifecycle, we need to find ways of
making them more accessible to end users. The use of
prototypes and of domain-specific notations are examples
of how we might do this.

If we want to carry out development formally, we need
to find much more powerful methods of refinement.

These need to take into account the complexity of real
systems and the big change in structure that takes place
between the system specification and the system
architecture.

12.3. Lessons for Tools

Tools are very important, but I do believe that they
should be subservient to methods and not vice-versa. It is
more important to develop expressive notations than to
have good tools for handling obscure specifications.

Tools should be seen as aids to analysis, more than as
methods of assurance. The real benefit of a model checker
or proof tool is not when it tells you that your specification
is correct, but when it demonstrates the flaws in your
thinking. This is an important consideration for tool
writers: they need to think far more about the error cases
than the correct ones. This is similar to situation with
compilers: there are far more compilations of incorrect
programs than there are of correct ones, and good error
reporting is an important requirement of compilers.

If formal methods tools are to be used in mainstream
development they have to be fully automatic. Model
checking can be applied by ordinarily capable engineers,
but it is not reasonable to expect most engineers to carry
out sophisticated proofs.

Unfortunately real systems are too big for the current
generation of tools. We need huge improvements in the
capacity of tools like model checkers if they are to be used
routinely in real system development.

13. References

1. See, for example, C. L. Heitmeyer, R.D.Jeffords, B. G.
Labaw. Automated Consistency Checking of
Requirements Specifications. ACM Transactions on
Software Engineering and Methodology, 5:231–261,
July 1996.

2. M. Jackson, Software Requirements and
Specifications. Addison Wesley, 1995.

3. A. Hall. Using Formal Methods to Develop an ATC
Information System. IEEE Software, March 1996: 66–
76.

4. S. Lawrence Pfleeger, L. Hatton. Investigating the
Influence of Formal Methods. IEEE Computer,
February 1997: 33–43.

5. M. Croxford, J. Sutton. Breaking Through the V & V
Bottleneck. Proceedings Ada Europe 1995. Springer
Verlag Lecture Notes in Computer Science 1031,
1996.

6. R. Barden, S. Stepney, D. Cooper. Z in Practice.
Prentice Hall, 1994

